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The diffraction of obliquely incident surface waves by an asymmetric trench is 
investigated using linearized potential theory. A numerical solution is constructed 
by matching particular solutions for each subregion of constant depth along vertical 
boundaries ; the resulting matrix equation is solved numerically. Several cases where 
the trench-parallel wavenumber component in the incident-wave region exceeds the 
wavenumber for freely propagating waves in the trench are investigated and are 
found to result in large reductions in wave transmission ; however, reflection is not 
total owing to the finiteness of the obstacle. 

Results for one case are compared with data obtained from a small-scale wave-tank 
experiment. An approximate solution based on plane-wave modes is derived and 
compared with the numerical solution and, in the long-wave limit, with a previous 
analytic solution. 

1. Introduction 
The problem of the diffraction of incident waves by a finite obstacle in an otherwise 

infinite and uniform domain remains of general interest in linear wave theory. Several 
geometries of interest can be schematized by domains divided into separate regions 
by vertical geometrical boundaries, with the fluid depth being constant in each 
subdomain. Representative two-dimensional problems, with the boundary geometry 
uniform in the direction normal to the plane of interest, include those of elevated 
rectangular sills, fixed or floating rectangular obstacles at the water surface, and 
submerged trenches. The approach to the solution of problems of this type has 
typically been to construct solutions for each constant-depth subdomain in terms of 
eigenfunction expansions of the velocity potential ; the solutions are then matched 
a t  the vertical boundaries, resulting in sets of linear integral equations which must 
be truncated to a finite number of terms and solved numerically. One of the earliest 
solutions of this type was given by Takano (1960), who studied the cases of normal 
wave incidence on an elevated sill and fixed obstacle at the surface. I n  this study, 
we employ a modification of Takano’s method, discussed in $3. Newman (19653) also 
employed an integral-equation approach to study reflection and transmission of 
waves normally incident on a single step between finite- and infinite-depth regions. 
A variational approach, developed by Schwinger to study discontinuitiesin waveguides 
(see Schwinger & Saxon 1968) has been used by Miles (1967), to study Newman’s 
single-step problem, and by Mei & Black (1969), who studied the symmetric elevated 
sill and a floating rectangular cylinder. 

Lassiter (1  972), using the variational approach, studied waves normally incident 
on a rectangular trench where the water depths before and after the trench are 
constant but not necessarily equal, referred to here as the asymmetric case. Lee & 
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Ayer (1981) employed a transform method to  obtain a solution for the case of 
propagation of normally incident waves over a symmetric rectangular trench ; 
explicit solutions are obtained in the constant-depth region and the region of the 
trench, which are then matched numerically. Kreisel (1949) presented a general 
analysis for obstacles of finite extent and suitable geometry which proceeds by 
mapping the two-dimensional fluid domain into a rectangular strip ; the velocity 
potential is then obtained by solving a linear integral equation by iteration. Miles 
(1982) obtained results for normally incident long waves in the symmetric case, using 
the mapping procedure of Kreisel(l949) ; corrections to the reflection and transmission 
coefficients for oblique wave incidence are obtained based on the variational 
formulation of Mei & Black (1969). 

Our aim in the present study is to extend the results for the rectangular trench 
to the case of large angles of incidence and asymmetric geometry. Of special interest 
will be the case where the wavenumber component for the incident wave in the 
direction of the trench axis exceeds the wavenumber for the propagating modes in 
the trench; in this ease the solutions for modes with exponential depth dependence 
in the trench vary sinusoidally along the trench axis but exponentially in the 
cross-trench direction. For a sloping step and waves propagating from shallow to deep 
water, this situation leads to the presence of a linear caustic and total reflection of 
the incident waves; for the sudden depth discontinuity studied here, rays of the 
incident wave field would be reflected at the discontinuity in depth. However, owing 
to the finiteness of the obstacle, transmitted waves appear on the downwave side of 
the trench in the geometric shadow region. 

After formulating the problem in $2, we present in $3  results based on numerical 
solution of a set of integral equations derived using a modified form of Takano’s 
method. Solutions are compared with previous results for normally incident waves, 
and several results are presented for normal- and oblique-incidence cases. Also, 
results of a small-scale experiment are presented in comparison with the theoretical 
predictions. I n  $4, we present an approximate solution involving consideration of 
only the plane-wave modes of the particular solutions for each region; explicit forms 
€or reflection and transmission coefficients are obtained. We then obtain the long-wave 
asymptote of the plane-wave solution and compare our results with those of Miles 
(1982) for normal and oblique incidence. 

2. The boundary-value problem 
We consider the monochromatic small-amplitude motion of an inviscid, irrotational 

fluid with a free surface. The fluid domain is shown in figure 1. A coordinate system 
is established with z positive upwards and equal to zero at the free surface, and the 
y-axis extending along the trench boundary on the incident wave side. The depths 
are constant in each region, and in general differ, with the restriction that the depth 
in region 2 (the trench) must not be less than that in either region 1 or 3. 

We wish to investigate the diffraction of a plane surface wave incident from infinity 
in region 1 ,  whose direction of propagation forms an angle 8, with the x-axis in region 
1. The wave is affected by the trench in region 2, and there is a decaying or 
transmitted wave in region 3. The velocity potential 4(x ,  y, z ,  t )  must satisfy 
Laplace’s equation 

a 2  

ay2  a22 
vzq? = 0, v2 = {& + - + q, 
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FIGURE I .  Definition sketch. (a) vertical section, (b) plan. 

in the entire fluid domain, together with a free-surface boundary condition 

Here (T is the angular frequency of the monochromatic motion. No-flow conditions 
on the solid boundaries give 

v 

= 0, 9 
an (2.3) 

where n is the outward normal to any of the fixed boundary segments in figure 1 .  
Reflected and transmitted waves in regions 1 and 3 respectively must also satisfy 
radiation conditions at x = & CO. 

Anticipating the form of particular solutions, we denote the wavenumber of the 
incident wave in region 1 by k,, and let m be given by 

m = k, sine,, 

the projection of the incident wavenumber along the y-axis. Consideration of the 
phase speed along rays of the incident wave leads to Snell’s law for refraction across 
discontinuities in the water depth, resulting in 

m = ki sinet = constant (i = 1 ,2 ,3 ) .  

The velocity potentials q&(x, y, z ,  t )  in each region may then be written as 

&(x, y, z ,  t )  = $((x, z )  ei(mu-rt) (i = 1 ,2 ,3 ) .  (2.4) 

Solutions of the reduced boundary-value problem given by (2.1) together with the 
boundary conditions (2.2) and (2.3) and the radiation conditions a t  x = co may be 
constructed from the particular solutions in each region of the fluid domain: 

m 

q5i(x, z )  = A f ~ ~ ( z ) e * ~ ~ i ~ +  B$n@t,,(~)e’Ai.n” (i = 1 ,2 ,3 ) ,  (2.5) 
n = 1  
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where 

Here A: = 1 ,  A; = A,, A: = A, are the coefficients of the incident, reflected and 
transmitted waves respectively. In addition, we may take A;, B ,  and B:$ la = 0 for 
n = 1 ,  ... , co. 

The associated dispersion relations are given by 

K + K ~  tanKihi = 0 ( i  = 1 ,2 ,3 ) .  (2.6) 

Equations (2.6) have an infinite discrete set of real roots &K$, , ,  and a pair of 
imaginary roots & ki = +_iKi, o .  The functions I j l i ,  

I j l i , n  = c o s ~ ~ , ~ ( h # + z )  (n = 1 ,  ..., a), (2.7a) 

x i = + G , o  =coshki(h,+z) ( i =  1 ,2 ,3) .  (2.7b) 

and form a complete orthogonal set over the depth in each region. The I j l i ,n .  
correspond to non-propagating wave modes, while the xi represent the free wave 
modes. 

It is possible, for a range of values of 8, and h,/h,, to obtain the condition m > Ic,, 
in which case the boundary between regions 1 and 2 becomes reflective to the incident 
plane wave, and the waveforms corresponding to A& change from sinusoidal to 
exponential dependency in the cross-trench direction. In this case, the presence of 
a second barrier at  x = L, with m < k3, allows for transmission in region 3. In the 
event that m > k3, total reflection occurs. 

and xi are given by 

In the special case when I ,  = m, $2 assumes the form 

which represents the non-propagating modes plus a free wave travelling along the 
trench with constant or linearly varying amplitude across the trench. In the case 
of an infinitely wide trench (or when h3 = h2),  A; must be set equal to zero owing 
to the requirement of boundedness as x + co. For a trench of finite width, A; is in 
general non-zero. 

Solutions to the full problem must satisfy certain matching conditions over the 
vertical planes separating the fluid regions, namely 

(2.8a, b)  

(2.9a, b)  

These conditions provide continuity of pressure and horizontal velocity normal to 
the vertical fluid boundaries. 

An incident wave with amplitude aI given by 

aI = g-la cosh k, h, (2.10) 

is presumed to be incident from x = - 00 in region 1 ,  with reflected and transmitted 
wave amplitudes given respectively by 

a R  = g-lalARI cash E l  hi ; a T  = ~-'cTIATI cash k3 h3. (2.11a, b )  



Propagation of water waves over a trench 

Reflection and transmission coefficients are then given by 

51 

(2.12a, b )  I cosh k, h, 
KT = IATl cash k, h, > K R  = lARl ('3 

KT = 0, KR = 1 (I, imaginary). 

Conservation of energy in the diffracted wave field leads to the condition that 

(2.13) 

in the general case, where 

(i = 1,2,3) .  

This condition was found to be satisfied automatically by the solutions discussed in 
553 and 4. 

3. Numerical solution and results 
Takano (1960) constructed a solution to the problem of wave transmission over 

an elevated rectangular sill based on eigenfunction expansions of the form (2.4), with 
the restriction that 0, = 0. The expansions for each region are matched a t  the vertical 
boundaries according to the conditions (2.8) and (2.9). The method then proceeds by 
constructing a theoretically infinite set of independent integral equations by 
multiplying in turn each matching condition by all members of one of the sets 
{ki' ; n = 0, . . . , GO) and integrating each resulting equation over the appropriate 
depth. The choice of the set of eigenfunctions to be used with each matching condition 
depends on the geometry of the domain; here, the order of the choice of sets is reversed 
from the order used by Takano, as required by the shift from an elevated obstacle 
to a trench. This accounts for the restriction h, 2 {h,, h,}. 

3.1. Formulation and solution technique 
In order to construct a solution, it is first necessary to truncate the infinite series in 
(2.4) to a finite number of terms given by N .  We then must solve for 4N+4 unknown 
coefficients Ax, AS, AT, Bf, n ,  B&,, B;, (n  = 1, ..., N ) .  Matching and boundary 
conditions are manipulated in the following manner. First, we consider the condition 
of continuity of normal derivatives for Q, for the vertical boundaries at x = 0, L, given 
by (2.8b) and (2.9b). Making use of the orthogonality of the set (xz, n(z) ; n = 0, ..., N )  
in region 2, we construct 2N+2 integral equations of the form 

!!!? (0, z )  $,, n ( z )  dz (n  = 0, . .., N ) ,  (3.1 a )  

O a$, - ( L , ~ ) $ ~ , ~ ( z ) d z  (n  = 0, ..., N ) ,  (3 . lb )  - - 
j - h 2  ax 
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k, h, = 0.341 k ,  h, = 0.723 k, h, = 1.296 
N KT K ,  KT Kll KT KR 
2 0.8900 0.4559 0.9552 0.2961 0.9992 0.0404 
4 0.8889 0.4582 0.9554 0.2955 0.9994 0.0332 
8 0.8884 0.4590 0.9552 0.2961 0.9995 0.0324 

16 0.8882 0.4595 0.9552 0.2961 0.9995 0.0310 
32 0.8881 0.4596 0.9552 0.2960 0.9995 0.0306 

TABLE 1 .  Values of KT and K ,  computed for different values of N; 
h, = h,, h,/h,  = 3, L / h ,  = 10, 8 = Oo 

where the shift of integration limits in the last terms is possible since there is no 
contribution to the horizontal velocity field from the contours ( -  h, < z < - h, ; 

Similarly, a second set of 2 N + 2  equations is constructed from the condition for 
continuity of pressure. Here we are only concerned with the pressure over the vertical 
strips ( - h, Q z Q 0 ; x = 0) and ( - h3 < z < 0 ; z = L ) .  I n  this case we take advantage 
of the orthogonal properties of the sets ( n  = 0,  ..., N ) .  The integral 
equations are given by 

x = O ) ,  ( - h , < z <  - - h 3 ; z = L ) .  

$3, 

s"_,, 9, (0 ,z )  $,, n ( z )  dz = 2) $1. n(z) (3.2 ( n  = 0 ,  ...) N ) ,  (3%) 
-4 

9 3 ( ~ ,  2) $3 ,  n(z) dz = s"_,, A?(L, 2) $ 3 ,  n(z) dz ( n  = 0, ...' N ) .  (3.26) 
I h s  

The resulting set of 4N+4 simultaneous equations (3 .1) ,  (3 .2)  are solved numerically 
as a linear matrix equation. Solution accuracy was checked by verifying that enough 
non-propagating wave modes were retained to give reasonable convergence of the 
transmission and reflection coefficients. For the purposes of our study it was 
determined that the choice of N = 16 produced sufficiently accurate results for most 
values of k, h, ; sample calculations are presented in table 1 .  

3 .2 .  Comparison with previous results 

Results applicable to the present study have been presented by Lee & Ayer (1981) 
for the case of a symmetric trench, and by Lassiter (1972) for symmetric and 
asymmetric trenches. Both studies are restricted t o  the case of normal wave 
incidence. 

Our results are compared in figure 2 to points taken from figures 3 and 4 of Lee 
& Ayer (1981), for the geometry h,/h, = 7.625, L /h ,  = 5.28, and for the choice 
N = 16. Present results agree closely with those of Lee & Ayer, with the only 
noticeable discrepancy occurring in the reflection coefficient for the range 
0.7 < k, h, < 1 . 1 .  

A comparison with the results of Lassiter (1972) is shown in figure 3 ,  where K R  
is plotted against Kh, rather than k, h,. The results of the two methods are seen to 
disagree, particularly in the prediction of the value of Kh, corresponding to the first 
minimum of K,. Lee & Ayer (1981) showed, but did not discuss, a similar 
disagreement in the symmetric case; however, the shift in Kh, found here is 
approximately four times larger than in the symmetric case. 

I n  order to verify the trend of the present results, an independent solution was 
developed based on a boundary-integral method (BIM) identical with that of 
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FIGURE 2. Transmission and reflection coefficients; h,/h, = 7.625, L/hl  = 5.28, 0, = 0; --, 
numerical solution; 0 ,  data from Lee & Ayer (1981, figures 3 and 4); ----, plane-wave solution 
(4.4 b )  . 

I I < I I f I 1 I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

FIGURE 3. Reflection coefficient; h,/h, = 2 ,  h,/h, = 0.5, L/h ,  = 5, O1 = 0 ;  -, numerical 
solution ---, -.- results of Lassiter (1972, figure 7) ;  0 ,  BIM solution. 

Kh 1 
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0.8 1 

0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

kl hl 
FIGURE 4. Transmission coefficient, symmetric case, two angles of incidence; L/h, = 10: (a) 
h,/h, = 2;  ( b )  h,/h, = 3, I ,  = 0 at k,h, = 0.792. ----, numerical solution, 8, = 0. -, numerical 
solution; -.-. , plane-wave solution (4.4b); 0 ,  BIM solution; 8, = 45O. 

Raichlen & Lee (1978), also utilized by Lee & Ayer (1981). The asymmetry of the 
problem was accommodated by taking the closed boundary to enclose the entire 
trench and a region of one trench width to either side. Results obtained using a 
relatively cruder boundary discretization than used by Lee & Ayer (1981) are shown 
in figure 3, and verify the trend of the present solution in comparison with Lassiter's 
(1972) results. 

3.3. Results for normal and oblique incidence 

Results for two cases using a symmetric trench (h, = h3) are shown in figure 4 ,  where 
we demonstrate the effect of increasing the trench depth (for a fixed incidence wave 
angle) to the point where I, is imaginary for a range of values of k, h, for the incident 
wave, with 6, = O o  and 45'. For both depths, the trench width is equivalent 
(L/h,  = lo), while the trench depths are given by h,/h, = 2 in figure 4 ( a )  and 
h,/h, = 3 in figure 4 ( b ) .  For the 45O angle of incidence, 1, approaches 0 in the limit 
k, h, + 0  in figure 4 a ;  this does not affect the solution in any significant way. In figure 
4 ( b )  for a 45O angle of incidence, the solution passes through the point 1, = 0 at a value 
of k ,  h, = 0.792. The reduction in transmission across the trench caused by the 
theoretical presence of a totally reflective local barrier at x = 0 is clear, with KT 
dropping to a minimum of 0.31. The transmission coefficient recovers to unity in the 
limit k ,  h,+O owing to the vanishing width of the trench relative to the incident 
wavelength. 
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FIGURE 5. Transmission coefficient, symmetric case; L/h, = 20, h,/h, = 3, 8, = 4 5 O .  -, 
numerical solution, 1, = 0 at k, h, = 0.792. 

Results obtained by modifying Raichlen & Lee’s (1978) BIM formulation to the 
case of oblique incidence are shown also in figure 4 (a). Again these results are obtained 
using a relatively crude boundary discretization, and serve to verify the trend of the 
numerical solution described above. The BIM is modified by incorporating the Green 
function for the modified Helmholtz equation obtained by substituting (2.4) in (2.1). 
A similar method, using a more refined boundary discretization technique, has been 
utilized by Liu & Abbaspour (1982) to study the diffraction of oblique waves by 
floating cylinders. 

In figure 5 the effect of increasing the trench width a t  a fixed depth ratio is 
demonstrated for the case L/h, = 20, h,/h, = 3. The position of 1, = 0 is unchanged 
from figure 4(b). The minimum value of KT drops significantly below that given in 
the previous figure; it is apparent that KT would indeed approach zero for I ,  
imaginary for increasingly wider trenches. 

In  order to further verify the nature of the solutions in the range of 1, imaginary, 
an experiment was conducted in a small 4 f t  x 8 ft wave basin. A 4& in. deep trench 
was constructed at a 45’ angle to a single-flap wave generator. A border of4 in. thick 
glued fibres was placed around the perimeter of the basin in order to reduce 
reflections. A depth of h, = 16 in. was chosen for the experimental tests; the physical 
dimensions were given by h,/h, = 4.56 and L/h ,  = 8.67. Only the symmetric case was 
tested. For this condition, 1, = 0 at a value of k,  h, = 0.871. Data were collected for 
the range of 0.58 < k, h, < 0.96, covering the range of transition from propagating 
to standing waves in the cross-trench direction. Transmission coefficients were 
determined by comparing the transmitted wave height in the presence of the trench 
with that obtained by covering the trench. Results are shown in figure 6 in 
comparison with the numerical predictions. It was found that, for values of 
k,h, < 0.58, the wave field contained too many reflected components to make an 
adequate resolution of the desired results possible ; for the range of k ,  h, values tested, 
reflections from the fibre mats were on the order of 5 %  of the incident amplitude. 
For values of k, h, above the range tested, the wave field is dominated by progressive 
waves in the trench, and we would not expect the results to differ qualitatively from 
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0 0.2 0.4 0.6 0.8 1 .o 1.2 

FIGURE 6. Transmission coefficient, symmetric case; Llh, = 8.67, h,/h, = 4.56, 81 = 45, 1, = 0 
at k,h,  = 0.871: -, numerical results; 0, experimental results. 

k ,  hl 

FIGURE 7 .  Experimental wave pattern. Case of figure 6, k ,  h, = 0.85. Trench appears as dark 
band, with waves incident from the lower left. Reflected wave propagates towards upper left. 

the data of Lee & Ayer (1981). From the results presented here, it was concluded that 
the theory accurately predicts the behaviour of the wave field in the transition from 
progressive to standing modes in the trench. 

An example wave field is shown in figure 7 ,  for the case k, h, = 0.85. Here the 
amplitude of the incident wave has been increased for the sake of clarity, leading to 
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FIGURE 8. Transmission coefficient, asymmetric cases. Results of numerical model, 6, = 45', 
L / h ,  = 10. (a )  h, = h, = 2h,; ( b )  h, = h, = 3h,, I ,  = I ,  = 0 at k ,h ,  = 0.792; ( c )  h , /h,  = 3 ,  h,/h,  = 0 ,  
1,  = 0 at k ,  h, = 0.792. 

the presence of free harmonic components which are visible as part of the transmitted 
wave (to the right in the figure). The reflection of the incident wave (from the left) 
is clearly shown upwave of the trench (dark band in photo). 

Results for several asymmetric cases and an angle of incidence 8, = 45' are shown 
in figure 8 .  Case (a)  represents the transmission of waves over a single step, with 
h, = h, = 2h,, and I,( = Z 3 )  real for all finite values of k,  h,. I n  this case KT approaches 
a value of 2 in the limit of small k ,  h,, and decays monotonically to  a value of 1 as 
k ,  h, increases. For case (b ) ,  where h, = h, = 3h,, KT also approaches 1 monotonically 
for large k,  h, ; however, the asymptotic value of 2 is approached as k,  h, j 0 . 7 9 2 ,  where 
I ,  = 1, = 0. For smaller values of k, h, no transmission is possible. 

Case ( c )  represents an asymmetric trench, with h,/h,  = 3 ,  h,/h, = 2 and L/h ,  = 10. 
As in figure 4 ( b ) ,  t ,  takes imaginary values for k,  h, less than 0.792, while transmitted 
waves are free to propagate in region 3 for all values of k,h,. I n  the range 
0 < k ,  h, < 0.792, the solution appears to be dominated by the characteristics of the 
trench, although the reduction of KT is not as large as seen in figure 4 ( b ) ,  owing to  
the lower step occurring at x = L. For k,  h, > 0.792, the solution approaches the case 
(a)  solution, indicating the dominance of region 3 in the short-wave limit. The 
approach of the case ( c )  solution to the case ( a )  solution is oscillatory, indicating the 
effect of interference between the two trench boundaries. 

kl h, 

4. Plane-wave approximation and the long-wave limit 
A long-wave approximation for the reflection and transmission of a plane wave 

normally incident a t  a step was first given by Lamb (1932) ,  who constructed a 
solution by matching surface displacement and the mass flux normal to the depth 
discontinuity. Bartholomeuz (1 958) found that this solution, while disregarding the 
requirement of no normal velocity over the vertical face of the step, gave the correct 
lowest order (in kh) results for the reflection and transmission coefficients. Miles (1967) 
pointed out that  Lamb's assumptions are equivalent to  neglecting the non-propagating 
modes with eigenfunctions +i, in the limit of small ki hi. Miles then constructed a 
plane-wave solution for unrestricted values of I%h for the case of propagation over a 
single step, studied by Newman (19653) and found that the resulting approximation 
for KT agreed with Newman's results to within 5 % for all values of kh. 
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In this section we derive an approximate solution for the asymmetric case 
h, =I= h,, h, 2 max (h l ,  h,) ,  based on the plane-wave modes. It is again noted that, in 
the case of l , ( = ( k ~ - m 2 ) ~ )  imaginary, it  is necessary to retain the exponentially 
decaying modes A: and A; in (3.16) as part of the formulation. After obtaining 
explicit results for the values of AT and A, for the general case of oblique incidence 
at an asymmetric trench, we take the limit for small kh to obtain results which are 
consistent with Lamb’s level of approximation. 

4.1. Plane-wave approximation 

For the plane-wave approximation, we consider simplified versions of the velocity 
potentials (2 .5)  in each region given by 

q51(x,z) = X1(Z){e’llZ+ARe-’llZ), 

$2(2, z )  = x,(z)  {A: eizzz + A; e-’lZZ}, 

(4.1 a )  

(4.1 b)  

q5,(x, z )  = x 3 ( z )  ATeiz3s. (4.1 c )  

Corresponding matching conditions are obtained by neglecting all terms containing 
@i, ( n  > 0) in (3.1), (3 .2) .  Solving for the reflected and transmitted waves, we obtain 
the results 

A ,  = (4 .2a)  
(a’p-ap’) cosl,L+i(aa‘-pp’) sin1,L 
- (a’p + up’) cos 1, L + i(m’ + pp’) sin I ,  L 

2a/3(I,/I,)e-iz3 
for the reflected wave, and 

(4.2 b )  A -  
T - (a’! + ap’ ) cos 1, L - i(aa’ + pp’ ) sin I, L 

for the transmitted wave, where 

and 
a = I ,  I f ,  a‘ = 13e, p = 1, I ,  14, p’ = I, I ,  15, 

For the symmetric case (h,  = h,, a = a‘, p = p’) 
coefficients reduce to A 

f& = - 
1 + ~ ’  

(4.3) 

J -hs 

the reflection and transmission 

(4 .4a)  

(4.4b) 

where 
(az-p”,” sin2 1, A. 

4a2p2 
A =  

This result is analogous to the result from quantum mechanics for the linear 
tunnelling of a free particle with energy E = 01, through a barrier of width L and 
potential V, = a2-/3, (see e.g. Anderson 1971, $5.2) .  It is notable that the case of 
a classically impenetrable barrier, with V, > E,  corresponds to the range where I ,  
assumes imaginary values. It is in this range that the geometric-optics approximation 
for water waves would preclude transmitted waves even in the case of a finite barrier 
width. 
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It is apparent from (4.4) that  the approximate solution conserves energy identically. 
The incident wave is completely transmitted for all 1, when a = J3, which is satisfied 
when h, = h,. I n  the limit l , + O ,  J3 also vanishes; writing out the terms in (4 .4b) ,  we 
obtain 

For 1, imaginary (4 .4b)  rewritten in terms of real quantities gives 

(az + ‘p’”2 sinh2 JE,J L)-’ (1, imaginary) K$ = ( I +  
4a21~12 

For both of these cases, i t  is evident that the transmitted wave vanishes as L + OC) , 
as expected. Complete transmission also takes place (for 1, real) whenever 

1 , L = n n  ( n = 0 , 1 , 2  ,... ). (4 .7)  

The case n = 0 is again a trivial solution corresponding to the case of a trench of 
vanishing width in comparison to the wavelength. For n > 0,  complete transmission 
occurs whenever the trench width is equal to an integer number of half-wavelengths 
in the x-direction, given by n/l,. This result is valid for shallow water; however, it 
has been shown by Newman ( 1 9 6 5 ~ )  to  be an incorrect result for waves in water of 
arbitrary depth. For the full problem, complete transmission would be expected to 
occur at wave conditions where 

I ,  L = nn + S,, (4 .8)  

where 6, represents a phase shift for reflection of waves in the trench. The effect of 
this phase shift can become dramatic for large values of h,/h, - see figure 2 ( a )  and 
the discussion below. 

For the case of a single step, we set h, = h, > h,. Equations (4 .2a,  b)  then reduce 
to 

(4 .9)  

which are analogous to  equation (4 .8)  of Miles (1967). For J3 = 0 ( I ,  = 0 ) ,  we obtain 
the result A, = 1,  AT = 214/Il .  For /3 (or I,) imaginary, we obtain 

(4.10) 

Here we must reinterpret ( 3 . 4 ~ )  for the case I ,  (=  I,) imaginary. Since i t  is clear that  
AT is the coefficient of an exponentially decaying mode, i t  does not represent the 
propagation of wave energy into regions 2 and 3.  Therefore KT = 0; both ~3 = 0 and 
J3 imaginary give total reflection of the incident wave, as required. 

Results of the plane-wave solution, shown in figure 4 ( b ) ,  indicate that the 
approximate solution yields reasonably accurate results for the relatively small depth 
differences studied here. This fortuitous result is seen to break down when the depth 
differences are increased. The plane-wave approximation was tested for a trench 
geometry corresponding to that of Lee & Ayer (1981, figure 3 ) ,  with h,/h,  = 7.625 
and Llh,  = 5.28;  results are shown in figure 2(a) .  The location of the first 
maximum of KT is shifted drastically by the neglect of the non-propagating modes, 
even though the magnitude of the minimum value is predicted fairly well. 
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4.2. The long-wave limit 

For the limit of small kh in all regions, the numerical and plane-wave solutions 
discussed above converge to  a form analogous to Lamb’s treatment. I n  particular, 
the velocity potentials for the full problem lose their modal structure; the dispersion 

(4.11) 
relation (2.6) reduces to 

which admits only the pair of imaginary roots f ki given by 

K +  /c; h, = 0, 

k, = u(gh,)-i.  
In  addition, the depth dependence $,(z) + 1 .  Forms for the reflection and transmission 
coefficients may be derived from the results of $4.1 ; in particular, for the symmetric 
case (h,  = h,) =!= h,, the transmission coefficient is given by 

(4.12) 

Results for the symmetric case can be compared with the results of Miles (1982), 
who solved for the values of A ,  and A ,  (our notation) for both normal and oblique 
incidence. Miles’ results for normal incidence were obtained using the mapping 
procedure developed by Kreisel (1949), and are limited to small values of kh in each 
region. Miles’ results are further limited by the assumption that the wave phase varies 
only slightly over the length of the obstacle; this will be seen to  be a severe limitation 
in one of our cases discussed below. Following our notation, Miles’ results for the 
transmitted wave are given by 

1 
A , = -  K 2 -  

1 - ik, 1 ’ - 1 + (k, h,),  ( l /h,)2 ’ 
(4.13) 

where l/h, is a dimensionless ratio; values of l /h,  for fixed values of iL/h, and 
(h , -h , ) /h ,  may be obtained from Miles (1982, figures 2 and 3, or directly from the 
analytic result). For small values of k, h, and correspondingly narrow trenches, results 
obtained using (4.13) were found to agree closely with the numerical solution of $3, 
with parameters L/h,  = 2, 8 and 1 < h,/h, < 2 being tested. I n  contrast, results 
obtained using (4.4) or (4.12) were seen to deviate slightly from the numerical results 
for all values of k, h, investigated, indicating the importance of the neglected 
non-propagating modes. Results for k, h, = 0.2 are shown in figure 9. For the case 
of a narrow trench (L/h,  = 2), Miles’ solution is seen to agree closely with the 
numerical results, while the plane-wave solution is seen to  deviate slightly. For the 
case L/h ,  = 8, the magnitude of the deviation of the plane-wave solution is similar. 
However, Miles’ solution shows a significant deviation from both the numerical and 
plane-wave solutions. Here the trench width is about 25.7 yo of the incident wave- 
length, and the assumptions made in obtaining Miles’ solution are violated. 

For the case of oblique incidence, Miles obtained a solution using a modified form 
of Mei & Black’s (1969) variational formulation ; the modified form of the transmission 
coefficient may be written as (following Miles 1982, equation (4.273)) 

KT = cos { l ,  h, [?(? - 1) (t) + i]} , (4.14) 

valid for 1, real. Results obtained from (4.14) and the plane-wave approximation (4.4), 
for the geometry h,/h, = 2, L/h, = 8, are compared in figure 10. 

Overall, plane-wave results agree reasonably well with Miles’ (1982) solutions. For 
the geometries tested, assumption of an  obstacle short in comparison to  the incident 
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FIGURE 9. Transmission coefficient as a function of relative trench depth; normal incidence, 8, = 0, 
k, h, = 0.20: ( a )  L/h,  = 2 ;  (b) L/h,  = 8.-, long-wavesolution (4.12); 0 ,  numericalresu1ts;----, 
(4.13), after Miles (1982). 
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FIGURE 10. Transmission coefficient as a function of angle of incidence 8,; k, h, = 0.20, L/h, = 8 :  
-, long-wave solution (4.12); ----, (4.14), after Miles (1982). 
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wavelength is seen to be more restrictive than the plane-wave approximation; 
however, the possibily drastic deviations of the plane-wave results from the numerical 
results for large values of kh were demonstrated above in the case of large relative-depth 
changes. 

5. Concluding remarks 
The analytic method used in $ 3  represents an extension to oblique angles of 

incidence of the method employed by Takano for the case of normally incident waves 
transmitted over an elevated sill. As was found by Newman (1965 b) ,  the use of such 
a method can lead to considerable computation requirements in the case of large 
differences in depths. I n  the present study, the result of principal interest, i.e. the 
large reduction in transmission caused by a local refractive barrier, could be discerned 
without recourse to large spatial differences in water depth. In  the same sense, the 
relatively small depth differences allowed the approximate solutions formulated in 
$4 to produce results in rough qualitative agreement with the full solution; this 
qualitative agreement was seen to break down when results were compared with one 
case illustrated by Lee & Ayer (1981), where h,/h, = 7.625, a much larger depth ratio 
than encountered in the present study. 

The boundary integral method, used to verify the solutions in $3, represents a 
promising technique for extending the type of results obtained here to the case of 
irregular geometries. Results for one case have been presented by Lee, Ayer & Chang 
(1980), who studied a trapezoidal trench. The modification of Lee & Ayer’s (1981) 
formulation to the case of an asymmetric geometry and oblique wave incidence, as 
in $3, allows for the study of an even greater variety of problems. 

This work was supported in part by a grant from the Office of Naval Research, 
Coastal Science Program. 

Note added inproof. Professors J .  N .  Newman and Dick K.-P. Yue have investigated 
the discrepancy between the results of Lassiter and the present study, as shown in 
figure 3. Using a finite-element technique, they have obtained results in qualitative 
agreement with those of the present study. The source of error in the original results 
of Lassiter is a t  present unknown. 
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